
An iterative boundary element method for solving the
one-dimensional backward heat conduction problem

N.S. Mera *, L. Elliott, D.B. Ingham, D. Lesnic

Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK

Received 4 October 1999; received in revised form 2 July 2000

Abstract

In this paper, the iterative algorithm proposed by V.A. Kozlov and V.G. Maz'ya [Leningrad Math. J. 5 (1990) 1207±

1228] is numerically implemented using the boundary element method (BEM) in order to solve the backward heat

conduction problem (BHCP). The convergence and the stability of the numerical method are investigated and a

stopping criterion is proposed. The numerical results obtained con®rm that the iterative BEM produces a convergent

and stable numerical solution with respect to increasing the number of boundary elements and decreasing the amount

of noise added into the input data. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The transient heat conduction phenomena are gen-

erally governed by the parabolic heat conduction equa-

tion and if the initial temperature distribution and

boundary conditions are speci®ed, then this, in general,

leads to a well-posed problem which may easily be

solved numerically by using various numerical methods.

However, in many practical situations, when dealing

with a heat conduction body it is not always possible to

specify the boundary conditions or the initial tempera-

ture. For example, in practice, one may have to inves-

tigate the temperature distribution and the heat ¯ux

history from the known data at a particular time. In

other words, it may be possible to specify the tempera-

ture distribution at a particular time, say t � tf > 0 and

either the temperature T or the heat ¯ux oT=om on the

boundary of the domain, and from this data the ques-

tion arises as to whether the temperature distribution at

any earlier time t < tf can be retrieved. This is usually

referred to as the backward heat conduction problem

(BHCP), or the ®nal boundary value problem.

The systematic study of the BHCP is of rather recent

origin, although consideration has already been given to

such problems for several hundred years. In general, no

solution which satis®es the heat conduction equation,

the ®nal data and the boundary conditions exists. Fur-

ther, even if a solution did exist, it would not be con-

tinuously dependent on the boundary and the ®nal data,

see [7]. Thus, the BHCP is an example of an ill-posed

problem that is impossible to solve using classical nu-

merical methods and requires special techniques to be

employed, see [1]. Conditions for which the BHCP be-

comes well posed have been investigated by Miranker [2]

and Cannon and Douglas [4]. These studies introduced

additional hypotheses which restrict the class of func-

tions to which the solution must belong, and which are

seldom satis®ed. Therefore, numerical methods of

solution appear more useful. Thus, regularization tech-

niques, see [3,10], have been developed for solving the

BHCP. Di�erent methods, based on a perturbation of

the original parabolic heat equation were proposed by

Lattes and Lions [5] and Lesnic et al. [11].

In this study, we iteratively use the boundary element

method (BEM) in order to implement a convergent al-

gorithm which was ®rst proposed by Kozlov and Ma-

z'ya [9] and consists of obtaining successive solutions of

well-posed forward heat conduction problems. The

advantages of this iterative BEM are the simplicity of

the computational scheme and the high accuracy and

stability of the solution. Furthermore, it is applicable to

any type of boundary conditions.

In this paper, the convergence of the numerical

method and the stability of the numerical solution are

illustrated for a very severe test example and the
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computational performances and limitations when tf

increases are investigated.

2. Mathematical formulation of the BHCP

For simplicity, we consider only the one-dimensional

backward heat conduction problem. Further, no loss of

generality takes place if we assume that the spatial do-

main of the solution is the interval �0; 1�. Thus we con-

sider the following problem:

oT
ot
�x; t� � o2T

ox2
for �x; t� 2 �0; 1� � �0; tf�;

T �0; t� � f0�t� for t 2 �0; tf�;
T �1; t� � f1�t� for t 2 �0; tf�; �1�
T �x; tf� � g�x� for x 2 �0; 1�;

where f0; f1 and g are prescribed functions and the value

of tf > 0 is given. The boundary temperatures f0, f1 and

the ®nal temperature g are known while the initial

temperature T ��; 0� is unknown and has to be retrieved.

This is an example of an ill-posed problem which is

impossible to solve using classical numerical methods

and requires special techniques to be employed. A sim-

ilar problem is obtained if instead of the temperature,

the heat ¯ux is prescribed on the boundaries x � 0 and

x � 1.

For solving the BHCP given by Eq. (1), the quasi-

reversibility method of Lattes and Lions [5] constructs

an approximation T� which is the solution of the

problem

ÿ�r2T� � �r4T�� � oT�
ot
� 0 in X� �0; tf�; �2�

T� � f ; r2T� � of
ot

on oX� �0; tf �; �3�

T���; tf� � g��� in X: �4�

However, the solution T� of the well-posed problems (2)±

(4) does not converge, in general, when �! 0. More-

over, in practice, the Dirichlet data f is likely to be

contaminated with noise and the di�erentiation with

respect to t in Eq. (3) is in itself an ill-posed problem.

The ®nite-di�erence method of Lattes and Lions [5]

manifested signi®cant instabilities when tf > 0:2. In ad-

dition, Eq. (3) cannot be derived if a Neumann bound-

ary condition is prescribed.

Another approach for the problem being considered,

is that based on approximating the parabolic BHCP

with a convergent sequence of Cauchy ill-posed prob-

lems for the approximated elliptic heat equation, which

Nomenclature

A;B;C; . . . coe�cient matrices

b; v constant vectors

�a; b� the elements x such that a6 x6 b
�a; b� the elements x such that a < x < b
�a; b� the elements x such that a < x6 b
�a; b� the elements x such that a6 x < b
fa; bg the elements x � a and x � b
eT convergence error

E error used as a stopping condition

F fundamental solution of the heat

equation

f ; g given values of the temperature

H Heaviside function

k number of iterations

Lp space of p-integrable functions

M number of time steps

N ;N0 numbers of boundary elements

q given values of the heat ¯ux

X the space domain

oX the boundary of the space domain X
X the closure of X (the set of elements

belonging to X and its boundary oX)

t time

tf ®nal time
~tj time nodes

T temperature

T0 initial temperature

Tf ®nal temperature

T 0 heat ¯ux

uk successive approximations for the

temperature

x space variable

~xi space nodes

Greek symbols

� Gaussian random variable

g coe�cient of the boundary integral

equation

r2 Laplace operator

m normal vector to a surface

r standard deviation of a Gaussian

random variable

Subscripts and superscripts

i; j; l indices
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is then solved by implementing an iterative, alternating

algorithm, see [11]. In this approach, an approximation

T�; � > 0 is constructed, which satis®es

L��T�� � ÿ r2T�

�
� � o

2T�
ot2

�
� oT�

ot

� 0 in X� �0; tf�; �5�

T� � f on oX� �0; tf �; �6�

T���; 0� � T0��� � unknown;

T���; tf� � g��� in X: �7�

For very small values of �, the solution T� of problems

(5)±(7) is a good approximation to the solution of the

BHCP given by Eq. (1). However, since in Eq. (7), T0���
is unknown, problem (5)±(7) is transformed into a

Cauchy problem by initially solving the direct, well-

posed forward heat conduction problem in the domain

X� �tf ;�1� to obtain

oT
om
��; tf� � h��� in X: �8�

The iterative BEM proposed by Lesnic et al. [11] per-

formed reasonable accurate and stable computations up

to tf � 1:0. However, in order to accommodate the

method of Lesnic et al. [11] it is necessary to know the

boundary data for values of t larger than tf , but these

data are not always available in practice. Moreover,

whilst the method produces accurate results for small

values of tf the accuracy is substantially decreased as tf

increases.

In this paper, we implement a convergent iterative

algorithm proposed by Kozlov and Maz'ya [9] based on

an iterative procedure which consists of obtaining suc-

cessive solutions of well-posed forward heat conduction

problems. This algorithm does not need any extra in-

formation as required by Lesnic et al. [11].

3. The BEM for the one-dimensional transient heat

equation

Following a classical BEM methodology, see [8], and

using the fundamental solution for the time dependent

heat equation in one dimension given by

F �x; t; x0; t0� � H�t ÿ t0�
2
�����������������
p�t ÿ t0�p exp�ÿ�xÿ x0�2=4�t ÿ t0��;

�9�

where H is the Heaviside function, the partial di�erential

Eq. (1) can be transformed into the following boundary

integral equation:

g�x�T �p� �
Z

S1

F
oT
om

�
ÿ T

oF
om

�
dS1

�
Z

S2

TF dS2; p � �x; t� 2 X� �0; tf�; �10�

where S1 � f0; 1g � �0; tf�, S2 � X� f0g and g�x� � 1 if

x 2 �0; 1� and g�0� � g�1� � 0:5.

The boundary S1 is discretised into a series of small

boundary elements �tjÿ1; tj� for j � 1; 2; . . . ;N whilst the

boundary S2 is discretised into a series of small cells

�xkÿ1; xk � for k � 1; 2; . . . ;N0. Over each boundary el-

ement, the temperature T and the ¯ux oT=om are as-

sumed to be constant and take their values at the

midpoint ~tj � �tjÿ1 � tj�=2. Also, over each cell the

temperature T is assumed to be constant and takes its

value at the midpoint ~xk � �xkÿ1 � xk�=2. If the bound-

ary integral equation (10) has these approximations

applied at every node on the boundary S1, then the

following system of linear algebraic equations is ob-

tained, see [8]

AT 0 ÿ BT � ET 0 � 0; �11�
where the vectors T 0; T and T 0 contains the values of

the heat ¯ux through the boundary, the temperature

on the boundary and the initial temperature, respec-

tively. The matrices A;B and E depend solely on the

geometry of the solution domain and may be analyti-

cally computed.

For the direct problem, the initial temperature T ��; 0�
and the boundary temperatures T �0; �� and T �1; ��, (or

the boundary heat ¯uxes �oT=om��0; �� and �oT=om�
�1; ��), are known so that the vectors T , (or T 0), and T 0

are known and the system given by Eq. (11) has 2N
linear equations and 2N unknowns that can be solved by

a direct method, e.g., Gaussian elimination method.

However, for various ill-posed problems the system

of linear algebraic equations resulting from a rear-

rangement of Eq. (11), together with the substitution of

the known boundary data and the extra information

provided, is ill-conditioned. Thus a direct approach to

the problem produces a highly unstable solution and

that is why other methods, such that the iterative

method presented in the following section, must be

developed.

4. Description of the algorithm

The solution of the BHCP may be accurately ap-

proximated by a sequence of solutions of well-posed

forward heat conduction problems constructed as fol-

lows:

Step 1. Specify an initial guess u0 for the initial

temperature T ��; 0�.
Step 2. If uk has been constructed, then solve the well-

posed forward heat conduction problem
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oT �k�

ot
�x; t� � o2T �k�

ox2
�x; t� for �x; t� 2 �0; 1� � �0; tf�;

T �k��0; t� � f0�t� for t 2 �0; tf�;
T �k��1; t� � f1�t� for t 2 �0; tf�;
T �k��x; 0� � uk�x� for x 2 �0; 1�

�12�

to determine the kth approximation T �k� for the tem-

perature distribution inside the solution domain.

Step 3. Construct uk�1 as given by the equation

uk�1�x� � uk�x� ÿ c�T �k��x; tf� ÿ g�x��; �13�

where c is a positive parameter.

Step 4. Repeat steps 2 and 3 until a prescribed

stopping criterion is satis®ed.

It has been proved, see [9], that the sequence

fT �k��x; t��gk�0 is convergent to the exact solution of

problem (1) for any initial guess u0 and any su�ciently

small parameter c.

In this paper, we investigate the numerical conver-

gence and the stability of the iterative algorithm

described above. We note that by this algorithm, the ill-

posed BHCP is reduced to a sequence of well-posed

forward heat conduction problems. The intermediate

forward problems are solved using a classical BEM as

described in the previous section. Therefore, the purpose

of this paper is to introduce an iterative BEM numerical

implementation of the algorithm of Kozlov and Maz'ya

[9] and to investigate the numerical convergence,

stability and accuracy with respect to the mesh size

discretisation and the number of iterations.

We note that relaxation procedures can also be

constructed by relaxing the marching condition (13) but

using these relaxation procedures with various constant

relaxation factors has the same e�ect as using various

values for the parameter c. The optimum value for the

parameter c is also investigated in this paper and a cri-

terion for selecting c is given.

The algorithm can easily be adopted to the situation

when the Neumann boundary data are given on a part

of the boundary by modifying accordingly the forward

problem (12) in step 2 of the algorithm. The method has

a general character and can be extended to a wide range

of analogous ill-posed problems. For example, similar

algorithms may be developed for the Cauchy problem

for the steady-state heat equation or for the two-

dimensional BHCP.

5. Numerical results and discussion

In order to investigate the convergence and the

stability of the numerical algorithm described in the

previous section, we investigate the same typical bench-

mark test example that was considered by Lesnic et al.

[11], namely, the temperature to be retrieved is given

by

T �x; t� � sin�px� exp�ÿp2t�;
�x; t� 2 �0; 1� � �0; tf �: �14�

Therefore, the BHCP considered can be written as

oT
ot
�x; t� � o2T

ox2
�x; t� for �x; t� 2 �0; 1� � �0; tf�;

T �0; t� � 0 for t 2 �0; tf�;
T �1; t� � 0 for t 2 �0; tf�;
T �x; tf� � sin�px� exp�ÿp2tf� for x 2 �0; 1�;

�15�

which is a severe test example since T �x; �� decays rapidly

to the steady state, zero-solution, as t increases. Also, for

this example, the Dirichlet data f � 0 and the infor-

mation given by g�x� � sin�px� exp�ÿp2tf� are very

weak, i.e., g is very small if tf is large. For example, for

tf � 1; g�x� is O�10ÿ4� which is almost negligible in

comparison with the desired initial temperature to

be retrieved, namely, T0�x� � sin�px� which is O�1�.
Clearly, if tf is chosen su�ciently large, such that the

order of g will decrease below any possible (®nite)

computer machine precision, then the inverse BHCP

problem will become uncomputable.

Clearly, for the test example given by Eq. (14), apart

from the mathematical ill-posedness of the BHCP, the

solution of the inverse problem becomes more di�cult

to obtain computationally as tf increases. In this section,

numerical results are presented for small, tf � 0:1,

moderate, tf 2 f0:3; 0:5g and large, tf P 0:75 values of

the ®nal time tf where the measurements are made.

The test example considered by Eq. (14) provides

little information for the inverse problem and therefore

enables one to judge the performances and computa-

tional limitations of the numerical method on highly ill-

posed BHCP formulations.

The numbers of boundary elements used to discretise

the space domain, N0, and the time interval �0; tf �;N ,

were both taken to be N ;N0 2 f10; 20; 40g.

5.1. Initial guess

An arbitrary function u0 may be speci®ed as a guess

for the initial temperature values but in order to improve

the rate of convergence of the iterative procedure, we

have chosen a function which ensures the continuity of

the temperature at the endpoints of the space interval

and which is also linear with respect to the spatial co-

ordinate x.

For the test example considered, the linear guess is

given by the constant function

u0�x� � 0; x 2 �0; 1�: �16�
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5.2. Convergence error

In order to investigate the convergence of the de-

scribed algorithm, at every iteration we evaluate the

convergence error de®ned by

eT � jjuk ÿ T0jjL2�X�; �17�

where uk is the initial temperature in the domain

X � �0; 1� retrieved after k iterations and T0 is the exact

value of the initial temperature, given by

T0�x� � T �x; 0� � sin�px�: �18�
Fig. 1 shows, on a log±log scale, the convergence error

eT given by Eq. (17) as a function of the number of it-

erations k � 1; 2; . . . ; 20000, calculated using a midpoint

rectangular rule for the norm jj � jjL2 �0;1�, for various

values of the ®nal time tf 2 f0:1; 0:3; 0:5g. The par-

ameter c was taken to be c � 0:05, but similar results

were obtained for various values of this parameter,

which act as a relaxation factor. A practical way to

choose the optimum value for the parameter c is also

presented later in this paper.

We note that the error eT decreases up to a speci®c

iteration and after that it starts to increase, see Fig. 1.

The number of the iteration at which the minimum in

the error eT occurs increases as the ®nal time tf increases.

Thus, as one would expect, the larger the value of the

®nal time, the larger the number of iterations necessary

to obtain an accurate solution. Moreover, the minimum

value of the error eT increases as tf is increased. There-

fore, less accurate solutions are obtained for large values

of the ®nal time tf .

Since the error in predicting the initial temperature T0

starts increasing after a certain number of iterations, a

stopping criterion is required in order to cease the iter-

ations at an optimum point. A stopping criterion, sim-

ilar to the one based on a direct BEM solution, used for

the Cauchy problem for the steady-state heat equation

in our previous work, see [11].

5.3. Stopping criterion

As described in Section 3, by applying a classical

direct BEM, the following system of linear algebraic

equations:

A1T 0 ÿ B1T � E1T 0 � 0 �19�
is obtained and thus the direct problem may be accu-

rately solved by replacing the known boundary data in

the system and using a Gaussian elimination method.

However, for the BHCP the vector T 0 is considered

unknown and thus the system of linear algebraic equa-

tions given by Eq. (11) has 2N � N0 unknowns and only

2N equations. Nevertheless, N0 more equations can be

obtained if the boundary integral equation (10) is ap-

plied at the points �~xk ; tf�k�1;...;N0
using the given ®nal

temperature T ��; tf�. These N0 more equations may be

written as

A2T 0 ÿ B2T � E2T 0 � T f ; �20�
where the vector T f contains the values of the unknown

temperature at the ®nal time, T � T �~xj; tf�
ÿ �

j�1;...;N0
. A

new system of 2N � N0 linear algebraic equations with

2N � N0 unknowns

A1T 0 � E1T 0 � B1T ; A2T 0 � E2T 0 � B2T � T f �21�

is obtained and it can be recast as

CX � b; �22�
where the vector b and the matrix C are known and the

vector X contains the unknown values of the initial

temperature and of the heat ¯ux through the boundary.

The system of linear algebraic equations given by

Eq. (22) cannot be solved to produce an accurate solu-

tion by a direct approach, since the matrix C, which

depend solely on the geometry of the domain and the

boundary condition formulation, is ill-conditioned. The

condition number of the sensitivity matrix cond�C� �
det�CtrC� obtained using various numbers of boundary

elements, namely, N 2 f5; 10; 20g for tf � 0:1 was found

to be of the order 10ÿ219; 10ÿ241 and 10ÿ286, respectively,

revealing a high degree of ill-posedness. Thus a direct

approach to the problem produces a highly unstable

solution and that is why other methods, such that the

iterative method presented in this paper must be used.

As for the Cauchy problem for the Laplace equation

considered in [12], we consider the system of linear

Fig. 1. The error in predicting the initial temperature, eT , ob-

tained for various values of the ®nal time tf , namely, tf � 0:1

( ± ), tf � 0:3 (± ± ±) and tf � 0:5 (� � � ��, using N � 20 and

N0 � 40 boundary elements and c � 0:05 for the BHCP given

by Eq. (15).
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algebraic equations given by Eq. (22), and we evaluate at

every iteration the error

E � jjCX k ÿ bjj; �23�

where X k is the vector obtained from the values of the

initial temperature and of the heat ¯ux after k iterations

and jjvjj denotes the Euclidean norm of the vector v. The

error E should tend to zero as the vector X k tends to the

exact solution. Therefore, the error E should provide an

appropriate stopping criterion since it contains infor-

mation about all the unknown data.

In order to investigate the evolution of the error E,

Fig. 2 shows on a log±log scale the errors eT and E as

functions of the number of iterations k, for various

values of the ®nal time tf 2 f0:1; 0:3; 0:5g. It can be seen

for all the examples considered that at the same time

as the error eT attains its minimum, the error E stops

decreasing and tends to become constant. Numerous

other test examples have been investigated and the

same conclusion may be drawn for various numbers

of boundary elements and various values of the

parameter c.

The numerical solution obtained for the initial tem-

perature T0 � T ��; 0� for various values of the ®nal time

tf 2 f0:1; 0:3; 0:5g using an iterative BEM with N0 � 40

and N � 20 is presented in Fig. 3 and it is found to be in

good agreement with the analytical solution given by

Eq. (18).

Thus it can be concluded that the described stopping

criterion, based on locating the point where the value of

the error E stops decreasing and tends to be a constant,

generally provides good stable estimates for the exact

solution and can be used to stop the iterative process

very close to its optimum solution.

It should be noted that the time and computer

storage necessary to obtain a good solution are sub-

stantially decreased if the solution in the domain

�0; 1� � �0; tf� is not computed after every iteration but

only at the ®nal iteration after the stopping criterion

has been satis®ed, since only the boundary data are

used to evaluate the stopping error E and to commence

a new iteration.

5.4. An alternative way to compute the error E

As in the previous section, we assume that the vectors

T and T f contain the known values of the temperature

on the boundary and at the ®nal time tf , respectively. We

also assume that the vectors T 0� �k and T 0
ÿ �k

and T k
f

contain the values of the heat ¯ux through the bound-

ary, the initial temperature T ��; 0� and the ®nal tem-

perature T ��; tf� obtained after k iterations. As described

in Section 3, by applying a classical BEM, the following

system of linear algebraic equations is obtained at every

iteration:

A1 T 0
ÿ �k � E1 T 0

ÿ �k � B1T ;

A2 T 0
ÿ �k � E2 T 0

ÿ �k � B2T � T k
f ; �24�

where the matrices Ai;Bi and Ei, i � 1; 2 depend solely

on the geometry of the solution domain. On the other

Fig. 2. The errors E obtained for various value of the ®nal time,

namely, tf � 0:1 �± � � � � ±�, tf � 0:3 �± � �±) and tf � 0:5 �ÿ � ÿ��
in comparison with the error eT for the same values of tf ,

namely, tf � 0:1 ( ± ), tf � 0:3 (± ± ±) and tf � 0:5 �� � � �� ob-

tained using N � 20 and N0 � 20 boundary elements and

c � 0:05, for the BHCP given by Eq. (15).

Fig. 3. The numerical solution obtained for the initial tem-

perature T ��; 0� for various values of the ®nal time, namely,

tf � 0:1 �M�; tf � 0:3 ��� and tf � 0:5 ��� obtained using an

iterative BEM with N � 20 and N0 � 40 boundary elements and

c � 0:05, in comparison with the analytical solution ( ± ) and

the initial guess (± ± ±), for the BHCP given by Eq. (15).

1942 N.S. Mera et al. / International Journal of Heat and Mass Transfer 44 (2001) 1937±1946



hand, the error E is evaluated as the norm of the residual

of the system obtained by applying a direct BEM

E � CX kk ÿ bk; �25�
where

C � A1 E1

A2 E2

� �
; b � B1T

B2T � T f

� �
;

Xk � T 0
ÿ �k

T 0
ÿ �k

" #
: �26�

The residual CXk ÿ b may be evaluated as

CXk ÿ b � A1 T 0
ÿ �k � E1 T 0

ÿ �k ÿ B1T

A2 T 0
ÿ �k � E2 T 0

ÿ �k ÿ B2T ÿ T f

" #
�27�

and using Eq. (24), we obtain

CXk ÿ b � 0
T k

f ÿ T f

� �
: �28�

Thus the error E is given by

E2 � T k
f



 ÿ T f



2 �
XN0

j�1

T k�~xj; tf�
h

ÿ g�~xj�
i2

�29�

with the approximations assumed by the BEM the L2

norm of the di�erence between the given ®nal tempera-

ture and the ®nal temperature obtained after k iterations

may be evaluated as

T k��; tf�


 ÿ g���

2

L2 �
Z 1

0

T k�x; tf�
� ÿ g�x��2

dx �30�

�
XN0

j�1

Z xj

xjÿ1

T k�x; tf�
� ÿ g�x��2

dx �31�

�
XN0

j�1

T k�~xj; tf�
h

ÿ g�~xj�
i2

�xj ÿ xjÿ1�

�32�

� 1

N0

XN0

j�1

T k�~xj; tf�
h

ÿ g�~xj�
i2

�33�

� 1

N0

E2: �34�

If Eq. (13) is now used, we obtain

E �
������
N0

p
T k��; tf�


 ÿ g���



L2 �
������
N0

p
c

uk�1k ÿ ukkL2 ; �35�

i.e., the error E is proportional to the L2 norm of the

di�erence between two consecutive approximations for

the initial temperature T ��; 0�. It should be noted that

the factor of proportionality
������
N0

p
=c depends on the

mesh size discretisation and on the relaxation parameter

used.

Using Eq. (35), the error E may be evaluated in a

simple way using only two successive approximations of

the initial temperature or the given ®nal temperature

and its corresponding approximation. Thus computa-

tional time and storage is saved. It should be noted that

a relation similar to (35) does not hold for the error E

for the Cauchy problem for Laplace equation consid-

ered in [12]. Thus, it can be concluded that the error E

obtained by evaluating the norm of the residual of the

system generated by a direct BEM is a more general

stopping criterion. However, for the algorithm presented

in this section this stopping criterion is reduced to the

simple, well-known Cauchy criterion, which consists of

evaluating the di�erence between two consecutive terms

of the sequence that approximates the unknown func-

tion.

5.5. Convergence with respect to the number of boundary

elements

In order to investigate the convergence of the method

with respect to the number of boundary elements used

for the time discretisation, Fig. 4 shows on a log±log

scale the curves obtained by plotting the error eT as a

function of the number of iterations, for various values

of N 2 f10; 20; 40g and a ®xed N0 � 40. It can be seen

that the larger the number of time boundary elements,

the smaller is the minimum in the error eT and thus the

more accurate is the numerical solution obtained.

The same conclusion may be drawn if the number of

boundary elements in time N is constant and the number

of boundary elements in space N0 is increased. It can be

concluded that the iterative process described is con-

vergent with respect to increasing the number of

boundary elements used to discretise both the space and

time domains. It was found for small values of the ®nal

Fig. 4. The error eT obtained for tf � 0:1 for various numbers

of time boundary elements, namely, N � 10 ( ± ), N � 20 (± ± ±)

and N � 40 �� � � ��, and a constant number of space boundary

elements N0 � 40, for c � 0:05, for the BHCP given by Eq. (15).
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time tf that the accuracy of the numerical solution ob-

tained is not substantially increased by taking N larger

than 20. However, for larger values of the ®nal time tf ,

increasing values of N may be necessary.

5.6. A time marching scheme

The described algorithm can be employed in a

backward time marching scheme by replacing the global

interval �0; tf � with subintervals �ti; ti�1�, starting from

tf � tM > tMÿ1 > � � � > t1 > t0 � 0, where M is the num-

ber of time steps.

In what follows, the ®nal time was taken to be

tf � 0:5 and the interval �0; tf � was discretised into M

equal subintervals �ti; ti�1� for i � 0;M ÿ 1, of length

Dt � tf=M . Further, each of the subintervals �ti; ti�1�
was discretised using N � 20 boundary elements.

Over each layer X� �ti; ti�1� for i � 0;M ÿ 1 the al-

gorithm previously described was numerically imple-

mented.

The numerical solutions for the initial temperature

retrieved using a time marching scheme with various

numbers of time steps, M 2 f1; 2; 5g, are graphically

represented in Fig. 5 in comparison with the analytical

solution. It can be seen that the results are still accurate

for small numbers of time steps, M � 2, but are inac-

curate for large number of time steps, M � 5. It should

be mentioned that the results obtained without the time

marching scheme �M � 1� are better than those obtained

by marching in time, even if the time marching proce-

dure using a small number of time steps, M 2 f2; 3g,
also provide accurate solutions.

5.7. Numerical results for large values of tf

In order to investigate the performance and the

computational limitations of the numerical method de-

scribed, Fig. 6 shows the numerical solution for the

initial temperature obtained for large values of the ®nal

time, namely tf 2 f0:75; 1:0g. It can be seen that the

accuracy of the numerical solution decreases as tf in-

creases, but even for large values of the ®nal time the

numerical solution is still a good approximation to the

exact solution.

One disadvantage of using the described method for

large time intervals is the slow rate of convergence and

thus the large number of iterations necessary to obtain

an accurate solution. Thus, for the test example given by

Eq. (14), the numbers of iterations used to obtain the

numerical solutions presented in Fig. 6 are O�106�. The

rate of convergence may be improved by increasing

the value of the parameter c, but too large values for this

parameter may result in a loss of accuracy of the ®nal

solution, as described in the following section. The large

number of iterations necessary for large values of tf are

substantially reduced if a time marching scheme is em-

ployed. However, in order to preserve the accuracy of

the numerical solution only small numbers of time steps,

M 2 f2; 3g, may be used, as mentioned in the previous

section.

Fig. 7 presents the numerical solution for the BHCP

with tf 2 f1:0; 1:5; 2:0g using a time marching scheme

with M � 2 time steps. It can be seen that there is a good

agreement between the numerical and the analytical

solutions. Moreover, by using a time marching scheme

Fig. 5. The numerical solutions obtained for the initial tem-

perature with tf � 0:5 using a marching scheme with various

numbers of time steps, namely, M � 1 ���, M � 2 �M�, M � 5

���, and the analytical solution ( ± ) for the BHCP given by

Eq. (15).

Fig. 6. The numerical solution for the initial temperature ob-

tained using the iterative BEM described over the whole in-

terval �0; tf� with c � 0:1 for various large values of the ®nal

time, namely, tf � 0:75 ��� and tf � 1:0 ���, and the analytical

solution ( ± ).
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with M � 2 time steps, the number of iterations

necessary to obtain the ®nal solution is reduced by a

factor 5.

The largest ®nal time tf for which the BHCP con-

sidered may be accurately solved clearly depends on the

test example considered. For the di�cult test example

given by Eq. (14), the methods proposed by Lattes and

Lions [5] and Lesnic et al. [11] manifested signi®cant

instabilities when tf > 0:2 and tf > 1:0, respectively.

However, the iterative BEM employed in this study was

free of such di�culties and we were able to perform

reasonably accurate and stable computations up to

tf � 2:0.

5.8. Choosing the parameter c

In order to reduce the number of iterations necessary

to obtain an accurate solution, the rate of convergence

of the iterative process may be increased by increasing

the value of the parameter c which acts as a constant

relaxation factor. However, a large value of the

parameter c may result in a decrease in the accuracy of

the ®nal solution. Thus, choosing an appropriate value

of the parameter c becomes important for the accuracy

of the iterative procedure. In what follows, a criterion is

presented for selecting a value of the parameter c close

to its optimum.

Fig. 8 shows the curves obtained by plotting the er-

rors eT and E as functions of the parameter c for

tf � 0:1. It is clear from the curve eT that the optimum

value is situated around c � 0:02. At the same point the

curve E stops decreasing and remains approximately

constant. Similar conclusions are obtained for various

numbers of boundary elements and various values of the

®nal time tf . Therefore, the optimum value for c can be

approximately located by using the corner in the curve

obtained by plotting E as a function of the parameter c.

Since good results are obtained for a various values of

the parameter c which are close to its optimum value, it

can be concluded that the described criterion is e�cient

in choosing the value of the parameter c. It should be

mentioned that the optimum value of the parameter c
depends on both the test example considered and the

value of the ®nal time tf .

5.9. Stability of the algorithm

In order to investigate the stability of the iterative

BEM proposed, the ®nal data g��� � T ��; tf� was per-

turbed as

g � g � e; e � G05DDF�0; r�;
r � max gj j s

100
;

�36�

where e is a Gaussian random variable with mean zero

and standard deviation r, generated by the NAG rou-

tine G05DDF, see [6], and s% is the percentage of ad-

ditive noise included in the input data g��� � T ��; tf� in

order to simulate the inherent measurement errors.

Fig. 9 shows the numerically obtained initial tem-

perature for tf � 0:1 when various amounts of noise

s 2 f0:1; 0:5; 1:0g are added into the input data. It can be

seen that as s decreases the numerical solution approx-

imates better the exact solution given by Eq. (14), while

remaining stable. It should be noted that the results are

improved if the perturbed input data are smoothed be-

fore being used in the iterative algorithm.

Fig. 8. The errors eT ( ± ) and E (± ± ±) as functions of the

parameter c obtained using the described iterative BEM with

N � 20 and N0 � 40 boundary elements for the BHCP consid-

ered by Eq. (15) with tf � 0:1.

Fig. 7. The numerical solution for the initial temperature ob-

tained using a time marching scheme with M � 2 time steps and

c � 0:1 for various large values of the ®nal time, namely,

tf � 1:0 ���, tf � 1:5 ��� and tf � 2:0 ��� and the analytical

solution ( ± ).
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We note that in order to preserve the stability of the

solution it is necessary to use a stopping criterion as

described above since the numerical solution produced is

not convergent with respect to increasing the number of

iterations as it stops improving and the errors start in-

creasing after a certain number of iterations. It was

found that the described stopping criterion is e�cient in

terminating the iterative process close to its optimum

point, even if noisy data are used for the ®nal tem-

perature g. Overall, it can be concluded that the pro-

posed iterative BEM produces a convergent, stable and

consistent numerical solution with respect to decreasing

the amount of noise.

6. Conclusions

In this paper, we have illustrated the use of an iter-

ative BEM for the solution of the one-dimensional

backward heat-conduction problem. In order to deal

with the instabilities of this ill-posed problem, the BHCP

was reduced to a sequence of well-posed forward heat

conduction problems. The convergence of the numerical

method and the stability of the numerical solution were

illustrated for a very severe test example. In addition

some computational performances and limitations when

tf increases were discussed. The algorithm was found to

be very e�cient in retrieving the temperature history

even if a large value is used for the ®nal time at which

the temperature is prescribed. A stopping criterion and a

criterion to chose the appropriate relaxation parameter

were also proposed.

Overall, it can be concluded that the iterative BEM

proposed produces a convergent, stable and accurate

numerical solution with respect to increasing the number

of boundary elements and decreasing the amount of

noise added into the input data.
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